A methodology for topographic clustering of structured text documents
نویسندگان
چکیده
Sets of texts are structured through a more or less refined hierarchy of sections, subsections and paragraphs; this structure contains information that should be exploited to handle these data and in particular, to enrich the comparison of texts, as a complement to the vector description of their contents. We propose a kernel-based methodology that follows this principle for a topographic clustering task and define a hierarchical kernel which compares paragraphs using the available hierarchical decomposition and in particular the provided titles.
منابع مشابه
خوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملخوشهبندی فراابتکاری اسناد فارسی اِکساِماِل مبتنی بر شباهت ساختاری و محتوایی
Due to the increasing number of documents, XML, effectively organize these documents in order to retrieve useful information from them is essential. A possible solution is performed on the clustering of XML documents in order to discover knowledge. Clustering XML documents is a key issue of how to measure the similarity between XML documents. Conventional clustering of text documents using a do...
متن کاملبررسی نقش انواع بافتار همنویسهها در تعیین شباهت بین مدارک
Aim: Automatic information retrieval is based on the assumption that texts contain content or structural elements that can be used in word sense disambiguation and thereby improving the effectiveness of the results retrieved. Homographs are among the words requiring sense disambiguation. Depending on their roles and positions in texts, homograph contexts could be divided to different types, wit...
متن کاملSemi-Structured Document Classification
INTRODUCTION Document classification developed over the last ten years, using techniques originating from the pattern recognition and machine learning communities. All these methods do operate on flat text representations where word occurrences are considered independents. The recent paper (Sebastiani, 2002) gives a very good survey on textual document classification. With the development of st...
متن کاملA review of text mining approaches and their function in discovering and extracting a topic
Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling. Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004